
December 2019

Towards a Computational Theory of
Action, Causation and Power for

Normative Reasoning
Giovanni SILENO a,1, Alexander BOER b and Tom VAN ENGERS b,a

a Informatics Institute, University of Amsterdam, Netherlands
b Leibniz Institute, University of Amsterdam/TNO, Netherlands

Abstract. In order to effectively implement guidance structures in a computational
social system, directives which are specified in general terms of duties and rights
need to be transformed in terms of powers and liabilities attributed to social parties.
The present paper is a work in progress report on an axiomatization of power struc-
tures in a logic programming setting, covering the intentional level in specifying
actions, the connection between productive characterization of actions and causa-
tion, the default nature of action specifications, failures and omissions, the relations
of causation and power, and the concept of interfering actions.

Keywords. Models of action, Causation, Power, Ability, Susceptibility, Event
Calculus, Reactive rules, Normative Reasoning, Logic Programming, ASP

1. Introduction

For enabling automated normative reasoning, norms need to be represented in a com-
putationally processable way, just as the world on which such norms are deemed to ap-
ply. Ideally, two types of normative reasoning can be distinguished: (a) reasoning with
norms, i.e. applying given norms to qualify behaviour and situations (possibly to take
decisions upon); (b) reasoning about norms, that can be further inflected in internal view
(i.e. check whether a certain norm is valid and applicable with respect to a given set of
norms) and external views to legal systems (i.e. whether the norm is effective in guiding
behaviour and/or it is efficient in terms of costs required for its maintenance). Although
the internal/external distinction is mostly evident in (b), a more attentive analysis shows
that elements of the second re-enter in (a). More specifically, in order to be applied on a
social system, i.e. to effectively implement guidance structures (for instance in a compu-
tational social system) directives which are specified in general terms of duties and rights
needs to be reinterpreted in terms of powers and liabilities attributed to social parties.

There is a long-standing debate between proponents of a purely deontic approach
to norms (in legal philosophy see e.g. MacCormick and Raz [1]: “Though powers are
essential to the explanation of rights, they are not in themselves rights”), and “paritary”
approaches to deontic and potestative categories as the one advanced by Hohfeld [2]. This
debate is mirrored in logic and related computational disciplines, although most solutions
starts implicitly or explicitly from some flavour of deontic logic (see e.g. [3]). Inspired
by Hohfeld, a much smaller number of studies focuses on directed obligations and rights

1Corresponding Author: g.sileno@uva.nl. This research was partly funded by NWO (VWData project).

December 2019

including powers (e.g. [4,5,6]). Relevant to this group, although different in spirit, is the
contribution by [7], highlighting the teleological aspects of normative relations.

The research direction motivating this paper takes a somehow even more radical
stance: even acknowledging the primary role of deontic categories to specify optimality
(and sub-optimality) in the world, we recognize the crucial role of potestative categories
to deal with the implementation of normative mechanisms in the social system, in the at-
tempt to guide it towards this optimality. Indeed, at the level of social system, everything
boils down to power structures, enabling or disabling action (institutional and physical).
Accepting this formulation, it is crucial to be able to model and reason with power, as
well as with related concepts, as action and causation. The present paper can be seen as
a work in progress report on an axiomatization in a logic programming (LP) setting.2

2. Representing action

Procedural, productive and intentional characterizations It is generally acknowledged
that three general characterizations of actions exist in human language, mapping to three
levels of abstraction [8]: task (e.g. “Brutus stabbed Ceasar”), outcome (“Brutus killed
Ceasar”), and intent (“Brutus murdered Ceasar”).3 More in detail:4

• The behavioural or procedural characterization relates to the task abstraction
level, describing the type of behaviour that the agent has just followed (or is fol-
lowing, if the action is not atomic). We will denote it as performs(X, A), as e.g.
in performs(brutus, stabbing).

• The productive characterization relates to the outcome level, describing the result
that the agent’s behaviour has produced. We will denote it as brings(X, R) as
e.g. in brings(brutus, dead).

• The purposive or intentional characterization is associated with the intent level,
describing the intent which drives the agent’s behaviour, whose content can
be either procedural aims(X, A) as e.g. aims(brutus, stabbing) or productive
aims(X, R), as e.g. in aims(brutus, dead).

Definition of actions Introducing a general predicate does for actions, we can rewrite
the variations of the initial example in terms of characterizations:

does(brutus, stabbing) <-> performs(brutus, stabbing).

does(brutus, killing) <*> brings(brutus, dead).

does(brutus, murdering) <-> aims(brutus, killing), does(brutus, killing)

where <-> indicates logical equivalence, and <*> stands for a default inference mecha-
nism that will be investigated further in the text. At second sight, we note that the task-
form (and similarly the does predicate) denotes the performance of an attempt, but in no
case it implies that the associated result has been achieved. In general, result is defined
as completion of the action (in the sense of successful execution), as e.g. stabbed or
killed, and, in case of actions specified with a productive characterization, as an effect

2A prototype implementation in answer set programming (ASP) of most ideas presented here is publicly
available at http://leibnizcenter.org/resources/JURIX2019/actions.lp.

3On similar lines, Sartor [7] considers the procedural and productive characterisations for the types of actions
to be used for norm modelling. Amongst others, Clark and Clark [9] include also a stative characterisation.

4As a convention, we use the -ing verbal form for identifiers denoting the action as a process or performance,
and the -ed form for the action denoted as an object, or act.

December 2019

in the world, as e.g. dead. Note that the outcome-form specifies the final result, but does
not necessarily refer to intent (as in case of accidents). The intent-form makes instead
clear that the outcome of the action is performed with intent.

General properties Procedural characterizations can be associated to immediate intents
(cf. Searle’s intention-in-action, or by seeing intentions as selected plans, as in Bratman’s
account, basis for most BDI agent architectures):
performs(brutus, stabbing) -> aims(brutus, stabbing).

Intentional procedural content can be brought to productive:
aims(brutus, stabbing) <-> aims(brutus, stabbed).

By definition, all actions comes along with an implicit productive content, e.g.:
performs(brutus, stabbing) <*> brings(brutus, stabbed).

The symbol <*> was used above to highlight that the logical equivalence between
performance and outcome does not always hold, as performances cover also failed at-
tempts of action. We propose here a possible logical model, in the simplifying assump-
tion of dealing only with atomic actions (i.e. their duration is irrelevant w.r.t. the model
granularity). Clearly, if an act has been completed, then performance has occurred:
brings(brutus, stabbed) -> performs(brutus, stabbing).

In contrast, we can assume that performance is completed by default, unless it is known
otherwise. We introduce then a strong negation predicate neg, but we also rely on the
unary operator default negation not provided by the logic programming semantics:
performs(brutus, stabbing), not neg(brings(brutus, stabbed))

-> brings(brutus, stabbed).

Note that, because actions of any characterization can be described in the task form,
this property is inherited by the does predicate. In sum, by generalizing these examples
we can identify a few axioms mapping observations of performances (performs/2),
attribution of causal responsibilities (brings/2) and of intentions (aims/2), to and from
action descriptions (does/2).

Perfect, imperfect actions, etc. Let us consider actions identified by a task description
A and an outcome description R, related by the predicate actionResult/2. Let us con-
sider that performance has a certain duration, but that the production of the outcome is
(qualitatively) immediate. The following qualifications of an action A can be defined as
conjunctions of does(X, A) and actionResult(A, R) with these other conditions:

• perfect action: brings(X, R)

• imperfect action: neg(brings(X, R))

• ongoing action: not(brings(X, R))

• successful intention: aims(X, R), brings(X, R)

• failed intention: aims(X, R), neg(brings(X, R))

• ongoing attempt: aims(X, A), not(brings(X, R))

where the not/1 predicate is true if no conclusion about the term is possible, i.e. not(P)
is true when not P and not neg(P) are true. So, by relying on the idea of imperfection,
action can be defined negatively:
does(X, neg(A)) <-> imperfect(does(X, A)).

meaning that the action has been performed, but has not reached the expected result
(failure). Note in contrast how neg(does(X, A)) means that performance has not been
initiated (omission).

December 2019

3. Representing causation

In a computational system, causal mechanisms triggered by an action A performed by an
agent X in condition C and resulting in producing or consuming an object r, can be imple-
mented as reactive rules, similarly to event-condition-action (ECA) production systems:

performs(X, A) : holds(C) => +r. % initiation

performs(X, A) : holds(C) => -r. % termination

In our case, consequences (neglecting temporal aspects) consist in the initiation (+) or
the termination (-) of one or more objects.

Causation in logical reasoning At further inspection, events as e.g. performs(X, A)

have an implicit temporal annotation, because the agent might perform several times the
same type of action. Thus, assuming actions to be atomic (immediate) and interleaved
(an actor cannot performs the same action twice at the same moment), performs(X, A,

T) would denote a well-specified action instance. Further, in the moment in which we
are dealing with time, dynamic facts have to be transformed into fluents: any (predicate)
object O requires to be situated in time, as in holds(O, T). Neglecting the enabling con-
dition C, causal mechanisms could be then rewritten by making explicit the change of
state for the fluent caused by the action:

performs(X, A, T), initiates(A, R), neg(holds(R, T-1)) -> holds(R, T).

performs(X, A, T), terminates(A, R), holds(R, T-1) -> neg(holds(R, T)).

(note that that, written in this form, A is an action type, while R is an object instance.) Un-
fortunately, these axioms are not sufficient for a logically sound reasoning. As shown in
situation calculus [10], event calculus [11] and functionally similar solutions, additional
axioms are required to capture inertia, circumscription and related epistemic properties.
Let us consider for instance the simplest version of event calculus:

%% event calculus axioms (F fluent, A action type, T, T1, T2 times)

holds(F, T) :- initially(F), not clipped(0, F, T).

holds(F, T2) :- occurs(A, T1), initiates(A, F, T1), T1 < T2,

not clipped(T1, F, T2).

clipped(T1, F, T2) :- occurs(E, T), T1 <= T, T < T2, terminates(A, F, T).

Here, actions and fluents are reified as terms rather than as predicates. Intuitively, this is
because change occurs at a meta-level with respect to the level of objects, and then every-
thing has to be brought at meta-level to reason with it. In contrast, the notation of reactive
rules enables in principle to abstract temporal attributes, as it introduces constraints only
at the level of events. The following reactive rule implements a causal mechanism:

performs(X, A): initiates(A, R) => +R.

but it corresponds to a logical dependence at event level (+ act as a unary predicate
instead of an operator). Then, some other computational mechanism is responsible for
executing the initiation and termination of fluents. For their compactness, it is tempting
to maintain the description of causal mechanisms as reactive rules separated from that
of necessary constraints holding between the objects, even knowing that they are not
independent: certain causal mechanisms can create implicit constraints, as well as given
constraints can inhibit certain causal ramifications. However, it is important to remind
here that it is possible to semantically unify them, e.g. by using event calculus.

December 2019

4. Representing power

Power—of an agent X towards an object Y to obtain a consequence R (concerning Y) by
performing an action A—can be seen as the reification of a causal mechanism:

power(X, Y, A, R) <-> [performs(X, A) => +R(Y)].

The biconditional can be nested in the reactive rule:

performs(X, A) : power(X, Y, A, R) => +R(Y).

unveiling that the initiates predicate seen above is nothing else than a coarser descrip-
tion of power. With respects to conditions, power, even more when acting on symbolic
objects (as for institutional power), is grounded on three qualification processes: (1) par-
ties X and Y qualify to certain roles; (2) action A qualifies to a certain type/form; (3)
context (here implicit, typically concerning where and when and the absence of overrul-
ing by another normative source). Each of these components brings conditions on the
application of the causal mechanism:

power(X, Y, A, R) :- role(X, x), role(Y, y),

action(A, a), actionResult(A, R), context(C, c).

Ability and susceptibility In the general causal interpretation, power primarily ad-
dresses the agent party (the one performing the action), so it can be renamed as ability:

ability(X, Y, A, R) <-> power(X, Y, A, R).

In duality, we can define the notion of susceptibility by primarily addressing the recipient
party. A recipient is susceptible to an action (and then to the agent performing it) if it
suffers a change because of its occurrence:

susceptibility(Y, X, A, R) <-> power(X, Y, A, R).

Negative powers By analogy to physics, in which forces can be attractive and repulsive,
given a certain power, we can define its opposite by changing the sign of the outcome
(cf. negative power/liability in [12]):

neg-power(X, Y, A, R) <-> power(X, Y, A, neg(R))

On the other hand, we can define the absence of power as the irrelevance of the action
with respect to a certain outcome:

no-power(X, Y, A, R) <-> not power(X, Y, A, R), not neg-power(X, Y, A, R).

Negative susceptibilities and no-susceptibilities can be defined accordingly.

Preparatory/interfering actions, enabling/disabling powers An action IA interferes
with an action A if, when the first is performed, it inhibits the outcome usually expected
for performing the second. This notion is crucial for defining e.g. protection measures
against interference as for freedom of speech (see e.g. [7]). Interestingly, it can be ex-
pressed in terms of powers; as a matter of facts, the interfering action modifies the power
associated to the action target of the interference. The modification can be structural (it
holds after IA’s completion) or contingent (it holds as long as the performance of IA is
occurring), constraints that can be captured respectively at event level and at object level:

% structural (at event level)

power(Z, power(X, Y, A, R), IA, neg)

<-> [performs(Z, IA) => +neg(power(X, Y, A, R)).]

December 2019

% contingent (at object level, neglecting the time variable T)

power(Z, power(X, Y, A, R), IA, neg)

<-> [not performs(Z, IA) -> power(X, Y, A, R).

performs(Z, IA) -> neg(power(X, Y, A, R)).]

Enabling powers, associated for instance to preparatory or support actions, can be de-
scribed in a dual way.

5. Conclusions and future developments
Implicitly or explicitly, most systems referring to regulations, policies and similar con-
structs in the computational domain refer to some form of deontic logic. Plausibly be-
cause of the strict control structure inherent to computational systems, the potestative
category is usually neglected. However, because computational systems are becoming
more and more social systems with de facto decentralized control structures, it becomes
crucial to form a theory of power, so that institutional design in computational settings
can intervene directly at the social coordination level of the guidance problem. In prin-
ciple, this representational standpoint should help to study the entrenchments holding
between physical and institutional actions.

Directed by this higher-order goal, the present paper presents our starting point for
an operational axiomatization of power structures in a logic programming setting, mo-
tivated by recent results in LP research and applications. It explicitly introduces the in-
tentional level in specifying actions, it elaborates on the connection between productive
characterization of actions and causation, it defines a way to compute failures and omis-
sions, and establishes a connection between causation, ability/susceptibility and power,
enabling a definition of interfering actions. Future extensions of this work will focus on
a wider number of institutional patterns (ex-ante vs ex-post enforcement, punishment-
based vs reward-based enforcement, delegation, etc.) and concepts (recklessness, negli-
gence, etc.).

References

[1] N. MacCormick and J. Raz. Voluntary Obligations and Normative Powers. Proceedings of the Aris-
totelian Society, 46(1972):59–102, 1972.

[2] W. N. Hohfeld. Fundamental Legal Conceptions as Applied in Judicial Reasoning. The Yale Law
Journal, 26(8):710–770, 1917.

[3] D. M. Gabbay, J. Horty, and X. Parent, editors. Handbook of Deontic Logic and Normative Systems.
College Publications, 2013.

[4] L. Lindahl. Position and Change: A Study in Law and Logic. Synthese Library. Springer, 1977.
[5] D. Makinson. On the formal representation of rights relations. Journal of Philosophical Logic, 15, 1986.
[6] A.J.I. Jones and M. Sergot. A Formal Characterisation of Institutionalised Power. Journal of IGPL,

1996.
[7] G. Sartor. Fundamental Legal Concepts: A Formal and Teleological Characterisation. Artificial Intelli-

gence and Law, 14(1):101–142, 2006.
[8] John F. Sowa. Knowledge Representation: Logical, Philosophical, and Computational Foundations.

MIT Press, 2000.
[9] H. H. Clark and E. V. Clark. Psychology and Language: An Introduction to Psycholinguistics. Harcourt

Brace Jovanovich, 1977.
[10] R. Reiter. Knowledge in Action: Logical Foundations for Specifying and Implementing Dynamical Sys-

tems. MIT Press, 2001.
[11] M. Shanahan. The Event Calculus Explained. Artificial Intelligence Today, pages 409–430, 1999.
[12] G. Sileno, A. Boer, and T. van Engers. On the Interactional Meaning of Fundamental Legal Concepts.

In Proceedings of JURIX 2014, volume FAIA 271, pages 39–48, 2014.

