
A Petri net-based notation for normative
modeling: evaluation on deontic paradoxes

Giovanni Sileno2,1, Alexander Boer1, and Tom van Engers1

1 University of Amsterdam, Leibniz Center for Law, the Netherlands
2 LTCI, Télécom ParisTech, Université Paris-Saclay, Paris, France

g.sileno@uva.nl

Abstract. Developing systems operating in alignment with norms is
not a straightforward endeavour. Part of the problems derive from the
suggestion that law concerns a system of norms, which, in abstract, in a
fixed point in time, could be approached and expressed atemporally, but,
when it is contextualized and applied, it naturally deals with a continuous
flow of events that modifies the normative directives as well. The paper
presents an alternative approach to some of these problems, exemplified
by well-known deontic puzzles, by extending the Petri net notation, most
common in process modeling, to Logic Programming Petri Nets. The
resulting visual formalism represents in a integrated, yet distinct fashion,
procedural and declarative aspects of the system under study.

Keywords: Contrary-to-duty, Deontic puzzles, Logic Programming, Petri Nets,
Normative Modeling

Introduction

Puzzles and paradoxes are tools for bringing conceptualizations to their bound-
ary conditions, and are therefore relevant to testing formal notations. The de-
ontic logic community has devoted special attention to paradoxes constructed
with contrary-to-duty (CTD) structures (see e.g. [4, 22, 17, 3, 9, 11]). These are
“paradoxes” because, although the normative statements look plausible in the
natural language form, when each sentence is formalized in standard deontic
logic (SDL)—the paper tiger of normative modeling—either the set of formulas
is inconsistent, or one of the formulas is a logical consequence of another formula
(see e.g. [2]).

Definition 1 (Contrary to Duty). A contrary-to-duty (CTD) structure is a
situation in which a primary obligation exists, and with its violation, a secondary
obligation comes into existence.

The importance of CTDs lies in more than just their theoretical aspects:
CTDs are fundamental to normative modeling, because they are at the base
of compensatory norms, prototypical in e.g. contracts. The problem carries def-
inite applicative concerns. This intuitively simple structure produces complex



2 A Petri net-based notation for normative modeling

structures of obligations, prohibitions or permissions applying to sequences of
violations or satisfactions relative to the conduct of agents in a regulated social
system. Moreover, the secondary obligation may directly contradict the primary
obligation. In this case, the conflict has to be solved to decide a course of action
(i.e. “I am obliged, but I am forbidden, so what should I do?”). This consid-
eration highlights the problem of specifying and treating preferences between
idealities, or, in more agentive terms, priorities between commitments.

In this work, we focus on testing CTD structures on Logic Programming
Petri Nets (LPPN).3 This modeling notation has been introduced in [25] with
the purpose of integrating and distinguishing in the same visual representa-
tion declarative aspects (concerning terminology, ontological constraints, nor-
mative directives, etc.) and procedural aspects (mechanisms, processes, courses
of actions, etc.) of the reference system. The resulting common representational
ground is proposed as a basis to support a continuous re-alignment in admin-
istrative organizations of representations of law (norms), of implementations of
law (services as business processes), and of action (behavioural scripts, possibly
intentionally characterized). The notation aims therefore to cover a wider class of
models (business processes embedded with normative positions, representation
of scenarios issued from narratives, agent scripts, etc.) than what usually studied
by deontic logic. Furthermore, beside its visual power (in principle increasing its
accessibility), it enjoys computational properties as distributed computation, i.e.
it does not require the reference to a global state.4

The connection of normative modeling with Petri nets is not completely new;
see e.g. [19, 18], and more recently [23]; however, these works mainly focus on
events and factual conditions, overlooking normative characterizations. Other
works, such as [24], have proposed using Petri nets to formalize contracts; with
respect to that work, the present proposal is more specific, as it focuses on
minimal CTDs (through the lens of deontic puzzles), but also more general, as
it considers the inclusion of declarative bindings in the model.

The paper is organized as follows. In § 1, we will present Logic Programming
Petri Nets (LPPN), delineating the notation and introducing informally a sim-
plified version of its semantics. In § 2, we will review a series of examples, all, save
the first, copied from the literature. For each of them, we will propose models of
the corresponding scenarios, and attempt to clarify part of the issues encountered
in SDL. Discussion and further developments end the paper. A formalization of
the propositional version of LPPN can be found in the appendix.

1 Logic Programming Petri Nets

Petri nets are a simple, yet effective computational modeling representation fea-
turing an intuitive visualization (see Fig. 1). They consist in directed, bipartite

3 Prototypes of LPPN interpreters are available on http://github.com/s1l3n0/

pypneu and http://github.com/s1l3n0/lppneu.
4 Cf. the recent extension to standard deontic logic by Gabbay and Straßer [6] integrat-

ing reactive constructs, an approach in many aspects dual to the present proposal.



A Petri net-based notation for normative modeling 3

p1 p3

p2

t1

(a) not enabled transition,
before firing

p1

p2

p3

E
t1

(b) enabled transition and
firing

p1

p2

p3

t1

(c) the transition has fired

Fig. 1: Example of a Petri net and of its execution (but also of a LPPN procedural
component when labels are propositions).

graphs with two types of nodes: places (visually represented with circles) and
transitions (with boxes). A place can be connected only to transitions and vice-
versa. One or more tokens (dots) can reside in each place. The execution of Petri
nets is also named “token game”: transitions fire by consuming tokens from their
input places and producing tokens in their output places.5

Despite their widespread use in computer science, electronics, business pro-
cess modeling and biology, Petri nets are generally considered not to be enough
expressive for reasoning purposes; in effect, they do not refer explicitly to any
informational or representational concept. In their simplest form, tokens are in-
distinct, and do not transport any data. Nevertheless, usually modelers introduce
labels to set up a correspondence between the modeling entities and the modeled
entities. This practice enables them to read the results of a model execution
in reference to the modeled system, and therefore it becomes functional to the
use of the notation, although it is not a requirement for the execution in itself.
Further interaction is possible if these labels are processed according an addi-
tional formalism, as for instance with the Coloured Petri Net (CPN) notation
[13], which, for many aspects, is a descendant of Predicate/Transition Nets [7].
If its expressiveness and wide application provide reasons for its adoption, the
CPN notation introduces many details which are unimportant in our setting
(e.g. expressions on arcs); more importantly, it still misses the requirement of
processing declarative bindings, necessary, for instance, to model terminological
relationships. We opted therefore for an alternative notation.

Whereas Petri nets specify procedural mechanisms, LPPNs extend those (a)
with Prolog-like literals as labels, attached on places and transitions; (b) with
nodes specifying (logic) declarative bindings on places and on transitions. The no-
tation builds upon the intuition that places and transitions mirror the common-
sense distinction between objects and events (e.g. [1]), roughly reflecting the use
of noun/verb categories in language [14]: the procedural components can be used
to model transient aspects of the system in focus; the declarative components
to model steady state aspects, i.e. those on which the transient is irrelevant or
does not make sense (e.g. terminology, ontological constraints, etc.).

5 For an overview on the general properties of Petri nets see e.g. [21].



4 A Petri net-based notation for normative modeling

p4

p5

p6
AND IMPLIES

(a)

p7

p9

p8

p10

p11t2

E t3

E

t4

(b)

Fig. 2: Examples of LPPN declarative components: (a) defined on places, corre-
sponding to the Prolog/ASP code: p6 :- p4, p5. p5. (b) defined on transi-
tions, instantaneously propagating the firing where possible (the IMPLIES label
on black circles is left implicit).

In this paper, for simplicity, we will consider only propositional labeling;
with this assumption, the execution model of the LPPN procedural component
is the same of Condition/Event nets, i.e. Petri nets whose places are not al-
lowed to contain more than one token. For this reason, the Petri net in Fig. 1
can be interpreted as an example of LPPN specifying a procedural mechanism.
However, the LPPN notation introduces also logic operator nodes (or l-nodes),
which apply on places or on transitions. An example of a sub-net with l-nodes
for places (small black squares) is given in Fig. 2a. These are used to create
logic compositions of places (via operators as NEG, AND, OR, etc). or to specify
logic inter-dependencies (via the logic conditional IMPLIES). Similarly, transi-
tions may be connected declaratively via l-nodes for transitions (black circles)
as in Fig. 2b. These connections may be interpreted as channels enabling in-
stantaneous propagation of firing. In this case, it is not relevant to introduce
operators as AND because, for the interleaving semantics, only one source transi-
tion may fire per step. To simplify the visual burden, we might leave the IMPLIES
label implicit, exploiting the sense of the arrow to specify the direction of the
relation. Operationally, these declarative components are treated integrating the
stable model semantics used in answer set programming (ASP) [15]. This was
a natural choice because process execution exhibits a prototypical ‘forward’ na-
ture, and ASP can be interpreted as providing forward chaining. A formalization
of propositional LPPNs can be found in the Appendix.

2 Deontic exercises

2.1 Crossing or not crossing?

Let us start from this minimal, conflicting CTD structure:

You are forbidden to cross the road.
If you are crossing the road, (you have to) cross the road!



A Petri net-based notation for normative modeling 5

prohibition
to cross

crossing

obligation
to cross

recognize
violation

recognize
initiation

recognize
satisfaction

start
crossing

end
crossing

(a)

prohibition
to cross

crossing

obligation
to cross

suspension

recognize
violation

recognize
initiation

recognize
satisfaction

start
crossing

end
crossing

(b)

Fig. 3: A minimal, conflicting and event-based contrary-to-duty (CTD) structure:
a secondary obligation is created after the violation of a primary obligation, and
in conflict with it. The CTD may be interpreted: (a) as an exception; or (b) as
overriding the primary obligation. The second is the most accepted option.

This rule of conduct is perfectly plausible: most parents say something similar to
their children at some moment. However, its translation in basic deontic logic is
not direct. The text suggests, in effect, an underlying model in terms of action: a
state-based interpretation would miss the implicit initiation/termination events
that make the action-wise prescription sound, and namely:

You are forbidden to cross the road.
If you have started to cross the road, you are obliged to finish crossing.

This transitional aspect can be easily mapped on a LPPN, separating the expe-
riential world from the institutional world, with the second synchronized to the
first via constituting links determining what counts as a violation or a satisfac-
tion.6

In principle, two modeling options are available in regard to the secondary
obligation; it can interpreted:

– as an exception, thus temporarily retracting the primary obligation (Fig. 3a);
– as overriding the primary obligation, which persists concurrently (Fig. 3b).

The second option requires an additional treatment, because it brings two con-
trary opposite positions to hold concurrently. Similarly to what suggested in the

6 With respect to constitutive rules, the LPPN notation enables to easily distinguish
classificatory constitutive rules (e.g. “a bike counts as a vehicle”) from constitutive
event rules (e.g. “raising a hand counts as making a bid”), as they are modeled
respectively using black boxes or black circles. Most formalizations of constitutive
rules consider only on the first aspect (e.g. [10]), cf. the overview in [27].



6 A Petri net-based notation for normative modeling

prohibition
to kill

obligation
to kill
gently

killing

suspension

violation

kill

start
killing

initiation

satisfaction

kill
gently kill not

gently

violation

Fig. 4: Gentle murderer case.

literature, this can be solved introducing an explicit ordering between positions,
which depends on how close to ideal is the world/context they are referring to
(see e.g. [16, 22]). In the proposed Petri net an aspect of this mechanism—the
fact that the secondary obligation is put in force in response to the violation of
the primary one—is already reified in the topology. To capture the remaining
part, i.e. that the second is contextually overriding the first, we need to order
them in the opposite sense: the last obligation created is the one with most
priority and should be the only active, suspending the previous ones. This can
be done introducing an inhibiting arc (visualized in Fig. 3b as an arrow with a
circle-shaped head).7 The resulting design can be seen as a model of salience.

2.2 Gentle murderer

The previous CTD model gives us the basic instruments to proceed. Let us start
from the classic case of the “gentle murderer”, given by Forrester [5]:

It is forbidden to kill,
but if one kills, one ought to kill gently.

This example is very similar to the previous one, except that the target of the
secondary obligation is subsumed by the target of the first one. Because our no-
tation explicitly accounts for a declarative dimension for events, we can directly
map this relation (Fig. 4).

7 Inhibiting arcs goes from places to transitions. If the input place of an inhibiting arc
is occupied, its output transition is disabled.



A Petri net-based notation for normative modeling 7

prohibition
fence

fence

obligation
white fence

white
fence

not white
fence

permission
fence

cottage
by the sea

suspension

cottage
not by
the sea

violationexception

initiation

satisfaction

default

violation

Fig. 5: White fence case.

2.3 White fence

Now, we consider a static and extended variation proposed by Prakken and
Sergot [22], the “white fence” case:

There must be no fence.
If there is a fence, it must be a white fence.
If the cottage is by the sea, there may be a fence.

This example shows the importance of distinguishing exceptions from overriding
effects due to CTDs (and therefore supports the second interpretation of CTD
given in § 2.1). In principle, a rule specifies a CTD if its premise is the negation
of the target of the obligation in the consequent of another rule. A rule specifies
an exception if it has as consequent the negation of the consequent of another
rule, and it has a lower priority than the first one (exceptions are by definition
subordinate to some normal conditions). In effect, the two rules can be read as
referring to a priority-based representation [26]. Considering part of the “white
fence” case in propositional form, we have:

Forb(fence)

sea → Perm(fence)

which can be translated to the corresponding constraint-based representation:

¬sea → Forb(fence)

sea → Perm(fence)

This treatment gives a hint as to how to deal with exceptions—that is, it helps
make explicit an enchaining of negations of the premises following the inverse
ordering of salience. The fastest solution to avoiding conflicts in the case of belief



8 A Petri net-based notation for normative modeling

Forb(A)

Obl(B)

Perm(A)

suspension

Perm(D) Forb(D)

monitor B

violation

default

C A

B

initiation

notB

satisfaction violation

exception

Fig. 6: Privacy act case.

revision is to not reify directly the default position (in this case, prohibition
against having a fence), but to generate it through a default rule [26]:

not sea → Forb(fence)

The resulting model is illustrated in Fig. 5.

2.4 Privacy act

Recently, Governatori [8] has proposed the case of a Privacy Act (fictional, but
based on actual Australian normative provisions):

i. The collection of personal information is forbidden, unless acting on a court
order authorising it.

ii. The destruction of illegally collected personal information before accessing it
is a defence against the illegal collection of the personal information.

iii. The collection of medical information is forbidden, unless the entity collecting
the medical information is permitted to collect personal information.

The following deontic interpretation is proposed:

i. Forbidden A. If C, then Permitted A.
ii. If Forbidden A and A, then Obligatory B.

iii. Forbidden D. If Permitted A, then Permitted D.

A, B, C, and D in this specific case are actions; (ii) specifies a CTD, (i) and
(iii) provide rules based on a priority-based representation. As before, we extract
explicitly the defaults. The negation of permission of A in (iii) can be interpreted
as the prohibition of A, thus converging to the default in (i). For completeness,
we have reported in Fig. 6 the monitoring place from which the event B or not
B is recognized.



A Petri net-based notation for normative modeling 9

Obl(q|p)

Obl(q)

p

initiation

(a)

Obl(q|p)

Obl(q)

Obl(p)

not p

p

initiation
violation

satisfaction

(b)

Fig. 7: Factual and deontic detachments.

2.5 Detachment principles

In the deontic logic literature, two types of “detachment principles” are recog-
nized as relevant. The first is called factual detachment (FD):

p ∧Obl(q|p)→ Obl(q) (1)

The second is known as deontic detachment (DD):

Obl(p) ∧Obl(q|p)→ Obl(q) (2)

In our framework, a conditional directive or commitment is seen as a sus-
ceptibility to a condition that creates or implies the directive depending upon
whether the connective is a causal or logical dependence. The two principles can
be then translated using the LPPN notation. Focusing on the logical dependence
case, the result is seen in Fig. 7. The pictures show that the first principle is
satisfied by the notation semantics; on the contrary, the second principle, which
is based on an anticipation of the normal conditional, is not satisfied.

2.6 Derived obligation

Consider these two sentences:

– Bob’s promise to meet you commits him to meeting you.
– It is obligatory that if Bob promises to meet you, he does so.

Although in natural language their difference is arguable, in the literature they
have been formalized using two distinct deontic formulations:

– p→ Obl(m)
– Obl(p→ m)

What is the difference between the two formulations in our framework? The
second formula can be translated with the consideration that the obligation of
something consists of two recognition rules about satisfaction and violation, by
default anchored respectively to something and to ¬something. As an object, the



10 A Petri net-based notation for normative modeling

p

Obl(m)

notmm

initiation

violationsatisfaction

(a)

Obl(p→ m)

p→ m p ∧ ¬m

¬p m

satisfaction violation

OR

(b)

Fig. 8: Derived obligation modeled as p→ Obl(m) or as Obl(p→ m).

conditional within the obligation can be transformed using the material impli-
cation.8 The result are reported in Fig. 8. As we see in the picture, both models
are violated in the same situation (p and ¬m); however, the second includes two
satisfied situations not accounted for in the first (¬p). In other words, the first
derived obligation precisely discriminates the elements producing the violation.
The second takes an explicit position also on the satisfying elements.

2.7 Chisholm’s paradox

At this point, we can finally model the “paradox” proposed by Chisholm [4]:

It ought to be that Jones goes (to the assistance of his neighbors).
It ought to be that if Jones goes, then he tells them he is coming.
If Jones doesn’t go, then he ought not tell them he is coming.
Jones doesn’t go.

This was seen as a paradox, because if we model it as:

i. Obl(go)
ii. Obl(go → tell)

iii. ¬go → Forb(tell)
iv. ¬go

and we apply both deontic and factual detachments, we find an inconsistency.
More precisely, from (i) and (ii), using of deontic detachment, we derive Obl(tell),

8 The specific example from which we started is not based on a logic conditional, but
on a causal connective, at least in the case of “if Bob promises to meet you, then
he does so”. In this case, the use of material implication is not a perfect fit, as the
temporal shift between the promise and the meeting falsifies the derived constraint,
at least on a transient basis. On a steady state analysis, however, this simplification
may be applied.



A Petri net-based notation for normative modeling 11

Obl(go)

go ¬go

Forb(tell)

Obl(go→ tell)

go→ tell

go ∧ ¬tell

¬tell tell

satisfaction violation

satisfaction violation

satisfaction

violation

OR

AND

Fig. 9: Chisholm’s paradox case.

while from (iii) and (iv), using factual detachment, we derive Obl(¬tell). How-
ever, representing this model using our notation as in Fig. 9, we do not find any
specific issue. The fact ¬go satisfies Obl(go → tell), but violates Obl(go), and
for this reason, Forb(tell) is instantiated. Depending on whether tell becomes
true, this may or may not be violated.

2.8 Residential neighbourhood

As we observed above, the difference in natural language between the two types
of derived obligations is arguable. In order to show what would happen if we
interpret the two as conditional obligations, we consider the non-agent version
of the Chisholm’s paradox proposed by Prakken and Sergot [22]:

There must be no dog.
If there is no dog, there must be no warning sign.
If there is a dog, there must be a warning sign.
There is a dog.

Written in this way, the modeling is straightforward (Fig. 10).

3 Discussion and further developments

At superficial level, the paper presented examples of application of a notation
introduced for wider modeling purposes [25]. This served as an important ex-
ercise to (partially) evaluate its practical functionality, as one may capture the
subtle problems related to modeling in a certain domain (in this case normative
modeling) only by approaching the specific issues that have been raised by prac-
titionners and scholars in that domain. The introduction of defaults, exceptions,



12 A Petri net-based notation for normative modeling

prohibition
dog

dog

obligation
warning sign

no dog

prohibition
warning sign

violation

initiation

satisfaction

initiation

Fig. 10: Residential neighbourhood case.

and suspensions in the notation presented here is a preliminary proposal. Some
of these aspects have been treated more in more detail elsewhere (e.g. defaults in
priority-based rule-bases [26], proceeding along [12]), while others require further
investigation (e.g. suspension, cf. [20]).

Nevertheless, the exercise yields concrete practical and theoretical results.
From a practical point of view, it makes a case supporting normative modeling
with notations similar to those used in business process modeling, thus poten-
tially facilitating cross-fertilization between theoretical to operational settings.
From a theoretical point of view, we observed for instance that our conceptual
framework does not entail the deontic detachment principle, hinting at a more
general minimal commitment taken by the notation. In other words, i.e. the no-
tation does not provide any rule a priori to conclude whether Obl(A) ∧Obl(B)
is the same as Obl(A ∧ B). This neutral starting point can be used to evaluate
the alternative impact of different axioms proposed in the literature, in affinity
with approaches like input/output logic [17].

More importantly, while working on these exercises, we appreciated the cru-
cial interplay between static and dynamic aspects (one of the issues underlying
many deontic puzzles). The LPPN notation, requiring the explicitation of proce-
dural and declarative aspects, highly facilitated this task, but our exercise sug-
gests further research on the modeling methodology. For instance, in Chisholm’s
paradox, we considered go and tell as labels of places, but strictly speaking,
they should be attached to transitions (as in the privacy act case). With this
choice, we would require making explicit the occurrence of the events as places,
in order to evaluate the material implication. Does this simplification hint at a
more general pattern? We modeled the nodes concerning violation and satisfac-
tion as l-nodes only when their transformational nature was certain. In general,
however, they may be transformational (when they simply identify whether a
violation or satisfaction holds at the moment) or reactive (when they reify the
fact that a violation occurred in that moment, or when they cause any change
on the inputs, e.g. removing the obligation)—note again the interplay between
static and dynamic aspects. In the future, an investigation of boundary cases
may help in formulating a more general theory on how to decide upon the level
of abstraction, and about whether it is possible to identify or elaborate general
patterns, that, depending on circumstances, are read in one form or in the other.



A Petri net-based notation for normative modeling 13

References

1. Breuker, J., Hoekstra, R.: Core concepts of law: taking common-sense seriously.
In: Proceedings of Formal Ontologies in Information (2004)

2. Broersen, J., van der Torre, L.: Ten Problems of Deontic Logic and Normative
Reasoning in Computer Science. Lectures on Logic and Computation 7388, 55–88
(2012)

3. Carmo, J., Jones, A.: Deontic logic and contrary-to-duties. Handbook of philosoph-
ical logic 8, 265–343 (2002)

4. Chisholm, R.M.: Contrary-to-duty imperatives and deontic logic. Analysis 24(2),
33–36 (1963)

5. Forrester, J.W.: Gentle Murder, or the Adverbial Samaritan. The Journal of Phi-
losophy 81(4), 193–197 (1984)

6. Gabbay, D.M., Straßer, C.: Reactive standard deontic logic. Journal of Logic and
Computation 25(1), 117–157 (2015)

7. Genrich, H.J.: Predicate/Transition Nets. In: Proceedings Advances in Petri nets
1986. pp. 207–247 (1987)

8. Governatori, G.: Thou Shalt is not You Will. Tech. rep., NICTA (2015)
9. Governatori, G., Rotolo, A.: Logic of Violations: A Gentzen System for Reason-

ing with Contrary-To-Duty Obligations. Australasian Journal of Logic 4, 193–215
(2006)

10. Grossi, D., Meyer, J.J.C., Dignum, F.: Classificatory Aspects of Counts-as: An
Analysis in Modal Logic. Journal of Logic and Computation 16(5), 613–643 (oct
2006)

11. Hansen, J., Pigozzi, G., Van Der Torre, L.: Ten philosophical problems in deontic
logic. Normative Multi-agent pp. 1–26 (2007)

12. Horty, J.F.: Rules and Reasons in the Theory of Precedent. Legal Theory 17(1)
(2011)

13. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use. Springer-Verlag (1996)

14. Kemmerer, D., Eggleston, A.: Nouns and verbs in the brain: Implications of lin-
guistic typology for cognitive neuroscience. Lingua 120(12), 2686–2690 (2010)

15. Lifschitz, V.: What Is Answer Set Programming? Proceedings of the 22th AAAI
Conference on Artificial Intelligence (2008)

16. Makinson, D.: Five faces of minimality. Studia Logica pp. 339–379 (1993)
17. Makinson, D., Van Der Torre, L.: Input/output logics. Journal of Philosophical

Logic (2000)
18. Meldman, J., Fox, S.: Concise Petri Nets and Their Use in Modeling the Social

Work (Scotland) Act 1968. Emory Law Journal 30, 583–630 (1981)
19. Meldman, J., Holt, A.: Petri nets and legal systems. Jurimetrics Journal 12(2),

65–75 (1971)
20. Meneguzzi, F., Telang, P., Singh, M.: A first-order formalization of commitments

and goals for planning. In: Proceedings of the 27th AAAI Conference on Artificial
Intelligence. pp. 697–703 (2013)

21. Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4) (1989)

22. Prakken, H., Sergot, M.: Contrary-to-duty obligations. Studia Logica 57(1), 91–115
(jul 1996)

23. Purvis, M.A.: Dynamic Modelling of Legal Processes with Petri Nets. Ph.D. thesis,
University of Otago (1998)



14 A Petri net-based notation for normative modeling

24. Raskin, J.F., Tan, Y.H., van der Torre, L.: How to model normative behavior
in Petri nets. Proceedings of the 2nd ModelAge: Workshop on Formal Models of
Agents pp. 223–241 (1996)

25. Sileno, G.: Aligning Law and Action. Ph.D. thesis, University of Amsterdam (2016)
26. Sileno, G., Boer, A., van Engers, T.: A Constructivist Approach to Rule Bases. In:

Proceeding of the 7th International Conference on Agents and Artificial Intelligence
(ICAART 2015) (2015)

27. Sileno, G., Boer, A., van Engers, T.: Revisiting Constitutive Rules. In: Proceedings
of the 6th Workshop on Artificial Intelligence and the Complexity of Legal Systems
(AICOL 2015) (2015)

A Formalization

Here we present a simplified version of the LPPN notation considering only
a propositional labeling. We start from the definition of propositional literals
derived from ASP [15], accounting for strong and default negation.

Definition 2 (Literal and Extended literals). Given a set of propositional
atoms A, the set of literals L = L+ ∪ L− consists of positive literals (atoms)
L+ = A, negative literals (negated atoms) L− = {−a | a ∈ A}, where ‘−’ stands
for strong negation.9 The set of extended literals L∗ = L ∪ Lnot consists of
literals and default negation literals Lnot = {not l| l ∈ L}, where ‘not’ stands
for default negation.10

We denote the basic topology of a Petri net as a procedural net.

Definition 3 (Procedural net). A procedural net is a bipartite directed
graph connecting two finite sets of nodes, called places and transitions. It can
be written as N = 〈P, T,E〉, where P = {p1, . . . , pn} is the set of place nodes;
T = {t1, . . . , tm} is the set of transition nodes; E = E+ ∪E− is the set of arcs
connecting them: E+ from transitions to places, E− from places to transitions.

LPPNs consists of three components: a procedural net specifying causal or tem-
poral relationships, and two declarative nets specifying respectively logical de-
pendencies at the level of objects or ongoing events (on places), and on impulse
events (on transitions). Furthermore, propositional LPPNs build upon a boolean
marking on places (like condition/event nets).

Definition 4 (Propositional Logic Programming Petri Net). A proposi-
tional Logic Programming Petri Net LPPN prop is a Petri Net whose places and
transitions are labeled with literals, enriched with declarative nets of places and
of transitions. It is defined by the following components:

– 〈P, T,PE 〉 is a procedural net; PE stands for procedural edges;

9 Strong negation is used to reify an explicitly false situation (e.g. “It does not rain”).
10 Default negation is used to reify a situation in which something cannot be re-

trieved/inferred (e.g. ‘It is unknown whether it rains or not’).



A Petri net-based notation for normative modeling 15

– CP : P → L∗ and CT : T → L are labeling functions, associating literals
respectively to places and to transitions;

– OP = {¬,−,∧,∨,→,↔, . . .} is a set of logic operators.
– LP and LT are sets of logic operator nodes (in the following called l-nodes)

respectively for places and for transitions.
– CLP : LP → OP maps each l-node for places to a logic operator; similarly,

CLT : LT → OP does the same for l-nodes for transitions.
– DELP = DE+

LP ∪ DE−LP is the set of arcs connecting l-nodes for places to
places; similarly, DELT = DE+

LT ∪ DE−LT for l-nodes for transitions and
transitions.11

– M : P → {0, 1} returns the marking of a place, i.e. whether the place con-
tains (1) or does not contain (0) a token.

Note that if LP∪LT = ∅, we have a strictly procedural LPPN prop, i.e. a standard
binary Petri net. If T = ∅, we have a strictly declarative LPPN prop, that can be
directly mapped to an ASP program.

With respect to the operational semantics, the execution cycle of a LPPN
consists of four steps: (1) given a “source” marking M , the bindings of the declar-
ative net of places entail a “ground” marking M∗; (2) an enabled transition is
selected to pre-fire, so determining a “source” transition-event e; (3) the bindings
of the declarative net of transitions entail all propagations of this event, obtain-
ing a set of transition-events, also denoted as the “ground” event-marking E∗;
(4) all transition-events are fired, producing and consuming the relative tokens.
The steps (1) and (3) are processed by an ASP solver: the declarative net of
places (respectively transitions) is translated as rules, tokens (transition-events)
are reified as facts; the ASP solver takes as input the resulting program and, if
satisfiable, it provides as output one or more ground marking (one or more sets
transition-events to be fired). For the steps (2) and (4), the operational seman-
tics distinguishes the external firings (started by the execution) from the internal
firing, immediately propagated (triggered by the declarative net of transitions).

Definition 5 (Enabled transition). A transition t is enabled in a ground
marking M∗ if a token is available for each input places:

Enabled(t) ≡ ∀pi ∈ •t,M∗(p) = 1

Similarly to what marking is for places, we consider an event-marking for tran-
sitions E : T → {0, 1}. E(t) = 1 if the transition t produces a transition-event
e. Each step s has a “source” event-marking E.

Definition 6 (Pre-firing). An enabled transition t pre-fires at a step s if it
selected to produce a transition-event:

∀t ∈ Enabled(T ) : t pre-fires ≡ E(t) = 1

11 Note that DE−
LT ⊆ (T ∪ P ) × LT , i.e. these edges go from transitions and places

(modeling contextual conditions) to l-nodes for transitions.



16 A Petri net-based notation for normative modeling

As we apply an interleaving semantics for the pre-firing, the interpreter selects
only one transition to pre-fire per step; for any other t′, E(t′) = 0.

Definition 7 (Firing). An enabled transition t fires by propagation, consuming
a token from each input place, and forging a token in each output place:

∀t ∈ Enabled(T ) : t fires ≡
E∗(t) = 1↔ ∀pi ∈ •t : M ′(pi) = 0 ∧ ∀po ∈ t• : M ′(po) = 1


